A Note on Rational Approximation

By Robert W. Floyd

It is suggested by plausible reasoning and confirmed by experience that the error of an *n*th degree polynomial approximation, in the Chebyshev sense of least maximum error, to an analytic function, is roughly a multiple of the n + 1st Chebyshev polynomial, $T_{n+1}(x)$, on the interval of approximation. Therefore if the *n*th degree polynomial $f^*(x)$ is equal to the function, f(x), on the roots of $T_{n+1}(x)$, we expect that $f^*(x)$ will be a satisfactory approach to a Chebyshev approximation of f(x).

Because f(x) is analytic, it may be represented with negligible error in the interval of approximation by a polynomial p(x) of sufficiently high degree; e.g., a truncated Taylor's or Maclaurin's series. Applying the division algorithm for polynomials,

$$p(x) = q_0(x) \cdot T_{n+1}(x) + r_0(x)$$

$$T_{n+1}(x) = q_1(x) \cdot r_0(x) + r_1(x)$$

$$r_0(x) = q_2(x) \cdot r_1(x) + r_2(x)$$

$$r_1(x) = q_3(x) \cdot r_2(x) + r_3(x), \text{ etc.}.$$

where the degrees of the r_i form a strictly decreasing sequence. From these equations we may write $r_i(x) = a_i(x) \cdot p(x) + b_i(x) \cdot T_{n+1}(x)$, where a_i and b_i are defined recursively by

$$a_i = a_{i-2} - q_i \cdot a_{i-1}, \quad a_{-1} = 0, \quad a_{-2} = 1$$

 $b_i = b_{i-2} - q_i \cdot b_{i-1}, \quad b_{-1} = 1, \quad b_{-2} = 0.$

It may be proven that the sum of the degrees of $a_i(x)$ and $r_i(x)$ is at most n. The first set of equations may be written $p(x) = [r_i(x)/a_i(x)] - [b_i(x)/a_i(x)] \cdot T_{n+1}(x)$, so that $r_i(x)/a_i(x)$ is a rational approximation to p(x), exact wherever $T_{n+1}(x)$ vanishes. Since $T_{n+1}(x) \leq 1$ in the interval of approximation, $b_i(x)/a_i(x)$ provides a bound for the error of the approximation. If $b_i(x)/a_i(x)$ is nearly constant on the interval of approximation, the error oscillates between n + 2 extrema of nearly equal magnitude, and the method of approximation is justified, for Chebyshev approximation is characterized by an error which oscillates at least n + 1 times between positive and negative extrema of equal magnitude. For the particular case i = 0, $a_i = 1$, and $r_0(x)$ is a polynomial approximation to f(x) of degree at most n.

For example; $f(x) = e^x = 1 + x + (x^2/2!) + (x^3/3!) + \cdots$;

$$p(x) = 1 + x + .5x^{2} + .1666\ 6667x^{3} + .0416\ 6667x^{4} + .0083\ 3333x^{5} + .0013\ 8889x^{6} + .0001\ 9841x^{7} + .0000\ 2480x^{8} + .0000\ 0276x^{9}.$$

For $-1 \le x \le 1 + p(x) - f(x) + \le 3.0 \times 10^{-7}$, $T_{7}(x) = 64x^{7} - 112x^{5} + 56x^{3} - 7x$.

For $-1 \le x \le 1$, $|p(x) - f(x)| \le 3.0 \times 10^{-7}$. $T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x$. Then $q_0 = (317.5625 + 38.75x + 4.3125x^2) \times 10^{-8}$;

Received July 6, 1959.

 $r_6 = 1 + 1.0000\ 2223x + .5000\ 0271x^2 + .1664\ 8913x^3 + .04164497x^4$ $+ .00868659x^{5} + .0014 3229x^{6};$

$$|p(x) - r_0| = |q_0| \cdot |T_7(x)| \le 3.61 \times 10^{-6} \quad (-1 \le x \le 1).$$

Therefore $|f(x) - r_0| \leq 3.91 \times 10^{-6} \ (-1 \leq x \leq 1)$. Dividing $T_7(x)$ by r_0 , $q_1 = -270,998.81 + 44,683.688x.$ $r_1 = 270,998.81 + 226,314.15x + 90,815,458x^2 + 22,832.391x^3$ $+ 3.846.3890x^4 + 381.2048x^5$.

 $a_0 = 1; b_0 = -q_0$ $a_1 = -q_1$; $b_1 = 1 + q_1q_0$

Therefore

$$p(x) = \frac{r_1}{a_1} - \frac{b_1}{a_1} T_7 = -\frac{r_1}{q_1} + \frac{1+q_1 q_0}{q_1} T_7(x).$$

The second term on the right is

$$\frac{.1394\ 0940 + .0368\ 86598x + .0056\ 281054x^2 + .0019\ 269840x^3}{-\ 270,998.81 + 44,683.688x} T_7(x)$$

whose absolute value is bounded by 8.121×10^{-7} for $-1 \le x \le 1$. Thus e^x may be approximated on this interval by

$$-\frac{r_1}{q_1} = \frac{1 + .8351\ 1123x + .3351\ 1386x^2 + .0842\ 5274x^3}{1 - .1648\ 8518x}$$

where the error is bounded by $\pm (3 \times 10^{-7} + 8.1 \times 10^{-7}) = \pm 1.1 \times 10^{-6}$.

Armour Research Foundation **Illinois Institute of Technology** Chicago 16, Illinois

1. C. HASTINGS, Approximations for Digital Computers, Princeton, 1955, p. 47-64. 2. F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill Book Co., New York, 1956, p. 389-395. 3. NBS APPLIED MATHEMATICS SERIES, 9, Tables of Chebyshev Polynomials $S_n(x)$ and

 $C_n(x)$, U. S. Govt. Printing Office, Washington, D. C., 1952, p. 16-18.

The Complete Factorization of $2^{132} + 1$

By K. R. Isemanger

The integer $2^{132} + 1$ is divisible by $2^{44} + 1 = 17 \cdot 353 \cdot 2931542417$ and the quotient, $2^{88} - 2^{44} + 1$, is divisible by 241.7393. There remains the formidable problem of factoring the resultant quotient N, where N is the integer

1 73700 82040 22350 83057.

Received July 3, 1959; in revised form, September 17, 1959.